

DM7490A, DM7493A Decade and Binary Counters

General Description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 90A and divide-by-eight for the 93A.

All of these counters have a gated zero reset and the 90A also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four-bit binary), the B input is connected to the ${\sf Q}_{\sf A}$ output. The input count pulses are applied to input A and the outputs are as

described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 90A counters by connecting the \mathbf{Q}_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output $\mathbf{Q}_{A}.$

Features

- Typical power dissipation
 - 90A 145 mW
 - 93A 130 mW
- Count frequency 42 MHz

Connection Diagrams

Dual-In-Line Package

Order Number DM5490J, DM5490W or DM7490AN See Package Number J14A, N14A or W14B

Dual-In-Line Package

Order Number DM7493AN See Package Number N14A

Absolute Maximum Ratings (Note 1)

Operating Free Air Temperature Range

Supply Voltage 7V
Input Voltage 5.5V

DM54 DM74 Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	F	Parameter		DM549	0	DM7490A			Units
			Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Volta	High Level Input Voltage				2			V
V _{IL}	Low Level Input Voltage				0.8			0.8	V
I _{OH}	High Level Output Cu	rrent			-0.8			-0.8	mA
I _{OL}	Low Level Output Current				16			16	mA
f _{CLK}	Clock Frequency	A	0		32	0		32	MHz
	(Note 6)	В	0		16	0		16	
t _W	Pulse Width	A	15			15			
	(Note 6)	В	30			30			ns
		Reset	15			15			
t _{REL}	Reset Release Time (Note 6)	25			25			ns
T _A	Free Air Operating Te	mperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'90A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -12 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max			0.2	0.4	V
	Voltage	V _{IH} = Min, V _{IL} = Max (No	ote 5)				
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$				1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max	A			80	
	Current	V _I = 2.7V	Reset			40	μA
			В			120	
I _{IL}	Low Level Input	V _{CC} = Max	Α			-3.2	
	Current	$V_1 = 0.4V$	Reset			-1.6	mA
			В			-4.8	
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-57	mA
	Output Current	(Note 3)	DM74	-18		-57	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			29	42	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

 $\textbf{Note 3:} \ \ \text{Not more than one output should be shorted at a time.}$

Note 4: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

Note 5: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'90A Switching Characteristics at $V_{\rm CC}$ = 5V and $T_{\rm A}$ = 25°C

Symbol	Parameter	From (Input) To (Output)	-	400Ω 15 pF	Units
-			Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		MHz
	Frequency	B to Q _B	16		
t _{PLH}	Propagation Delay Time	A to Q _A		16	ns
	Low to High Level Output				
t _{PHL}	Propagation Delay Time	A to Q _A		18	ns
	High to Low Level Output				
t _{PLH}	Propagation Delay Time	A to Q _D		48	ns
	Low to High Level Output				
t _{PHL}	Propagation Delay Time	A to Q _D		50	ns
	High to Low Level Output				
t _{PLH}	Propagation Delay Time	B to Q _B		16	ns
	Low to High Level Output				
t _{PHL}	Propagation Delay Time	B to Q _B		21	ns
	High to Low Level Output				
t _{PLH}	Propagation Delay Time	B to Q _C		32	ns
	Low to High Level Output				
t _{PHL}	Propagation Delay Time	B to Q _C		35	ns
	High to Low Level Output				
t _{PLH}	Propagation Delay Time	B to Q _D		32	ns
	Low to High Level Output				
t _{PHL}	Propagation Delay Time	B to Q _D		35	ns
	High to Low Level Output				
t _{PLH}	Propagation Delay Time	SET-9 to		30	ns
	Low to High Level Output	Q_A, Q_D			
t _{PHL}	Propagation Delay Time	SET-9 to		40	ns
	High to Low Level Output	Q_B, Q_C			
t _{PHL}	Propagation Delay Time	SET-0		40	ns
	High to Low Level Output	Any Q			

Recommended Operating Conditions

Symbol		Parameter			DM7493A			
				Min	Nom	Max		
V _{cc}	Supply Voltage			4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	High Level Input Voltage		2			V	
V _{IL}	Low Level Input Voltage	Low Level Input Voltage				0.8	V	
I _{OH}	High Level Output Current				-0.8	mA		
I _{OL}	Low Level Output Current					16	mA	
f _{CLK}	Clock Frequency	А		0		32	MHz	
	(Note 11)	В		0		16		
t _W	Pulse Width	Α		15				
	(Note 11)	В		30			ns	
		Reset		15				
t _{REL}	Reset Release Time (No	Reset Release Time (Note 11)		25			ns	
T _A	Free Air Operating Temp	perature		0		70	°C	

'93A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Typ (Note 7)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -12 mA			(******)	-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	V _{CC} = Min, I _{OH} = Max		3.4		٧
	Voltage	V _{IL} = Max, V _{IH} = Min	V _{IL} = Max, V _{IH} = Min				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max			0.2	0.4	V
	Voltage	V _{IH} = Min, V _{IL} = Max (Not	V _{IH} = Min, V _{IL} = Max (Note 10)				
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$	V _{CC} = Max, V _I = 5.5V			1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max	Reset			40	
	Current	$V_1 = 2.4V$	Α			80	μΑ
			В			80	
I _{IL}	Low Level Input	V _{CC} = Max	Reset			-1.6	
	Current	V _I = 0.4V	Α			-3.2	mA
			В			-3.2	
I _{os}	Short Circuit	V _{CC} = Max		-18		-57	mA
	Output Current	(Note 8)					
I _{cc}	Supply Current	V _{CC} = Max (Note 9)			26	39	mA

Note 7: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 8: Not more than one output should be shorted at a time.

Note 9: I_{CC} is measured with all outputs open, both R0 inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 10: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Note 11: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'93A Switching Characteristics at $V_{\rm CC}$ = 5V and $T_{\rm A}$ = $25^{\circ}C$

		From (Input)	R _L =	400Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	Units	
			Min	Max	1	
f _{MAX}	Maximum Clock	A to Q _A	32		MHz	
	Frequency	B to Q _B	16			
t _{PLH}	Propagation Delay Time	A to		16	ns	
	Low to High Level Output	Q_A				
t _{PHL}	Propagation Delay Time	A to		18	ns	
	High to Low Level Output	Q_A				
t _{PLH}	Propagation Delay Time	A to		70	ns	
	Low to High Level Output	Q_D				
t _{PHL}	Propagation Delay Time	A to		70	ns	
	High to Low Level Output	Q_D				
t _{PLH}	Propagation Delay Time	B to		16	ns	
	Low to High Level Output	Q _B				
t _{PHL}	Propagation Delay Time	B to		21	ns	
	High to Low Level Output	Q_B				
t _{PLH}	Propagation Delay Time	B to		32	ns	
	Low to High Level Output	Q_{c}				
t _{PHL}	Propagation Delay Time	B to		35	ns	
	High to Low Level Output	Q _C				
t _{PLH}	Propagation Delay Time	B to		51	ns	
	Low to High Level Output	Q_D				

'93A Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	From (Input) To (Output)	_	$R_L = 400\Omega$ $C_L = 15 pF$	
			Min	Max	
t _{PHL}	Propagation Delay Time	B to		51	ns
	High to Low Level Output	Q_D		31	
t _{PHL}	Propagation Delay Time	SET-0			
	High to Low Level Output	to		40	ns
		Any Q			

Function Tables (Note 15)

90A **BCD Count Sequence**

(Note 12)

Count	Outputs						
	Q_D	Q_{c}	Q_B	Q_A			
0	L	L	L	Г			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	Н	L	L	L			
9	Н	L	L	Н			

90A **BCD Bi-Quinary (5-2)**

(Note 13)

Count	Outputs						
	Q_A	Q_D	Q_{c}	Q_{B}			
0	L	L	L	Г			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	Н	L	L	L			
6	Н	L	L	Н			
7	Н	L	Н	L			
8	Н	L	Н	Н			
9	Н	Н	L	L			

93A Count Sequence (Note 14)

Count		Out	puts	
	Q_D	Q_{c}	Q_B	Q_A
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н	L	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	Н	Н	Н	Н

Function Tables (Note 15) (Continued) 90A

Reset/Count Function Table

	Reset Inputs				Out	puts	
R0(1)	R0(2)	R9(1)	R9(2)	Q_D	Q _c	Q _B	Q _A
Н	Н	L	Х	L	L	L	L
н	Н	Χ	L	L	L	L	L
X	Χ	Н	Н	Н	L	L	Н
X	L	Χ	L		COL	JNT	
L	Χ	L	X	COUNT			
L	X	X	L	COUNT			
X	L	L	Χ		COL	JNT	

93A Reset/Count Function Table

Reset	Inputs	Outputs						
R0(1)	R0(2)	Q_D	Q_{c}	Q_B	Q_A			
Н	Н	L	L	L	L			
L	Χ	COUNT						
X	L		COUNT					

Note 12: Output Q_A is connected to input B for BCD count.

Note 13: Output Q_D is connected to input A for bi-quinary count.

Note 14: Output $Q_{\mbox{\scriptsize A}}$ is connected to input B.

Note 15: H = High Level, L = Low Level, X = Don't Care.

Logic Diagrams

The J and K inputs shown without connection are for reference only and are functionally at a high level.

Logic Diagrams (Continued) 93A (12) Q_A > CLOCK (11) Q_D CLOCK DS006533-4

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com