FAIRCHILD
 SEMICONDபCTOR ${ }_{\text {TM }}$
 DM7490A, DM7493A
 Decade and Binary Counters

General Description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 90A and divide-by-eight for the 93A.
All of these counters have a gated zero reset and the 90A also has gated set-to-nine inputs for use in BCD nine's complement applications.
To use their maximum count length (decade or four-bit binary), the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as
described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 90A counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_{A}.

Features

- Typical power dissipation
-90A 145 mW
-93A 130 mW
- Count frequency 42 MHz

Absolute Maximum Ratings (Note 1)	DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Supply Voltage	7 V	DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Voltage	5.5 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM5490			DM7490A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
I_{OH}	High Level Output Current				-0.8			-0.8	mA
I_{OL}	Low Level Output Current				16			16	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 6)	A	0		32	0		32	MHz
		B	0		16	0		16	
t_{w}	Pulse Width (Note 6)	A	15			15			ns
		B	30			30			
		Reset	15			15			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 6)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'90A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}(\text { Note } 5) \end{aligned}$			0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	A			80	$\mu \mathrm{A}$
			Reset			40	
			B			120	
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=0.4 \mathrm{~V} \end{aligned}$	A			-3.2	mA
			Reset			-1.6	
			B			-4.8	
l Os	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-57	mA
	Output Current		DM74	-18		-57	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			29	42	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V , and all other inputs grounded. Note 5: Q_{A} outputs are tested at $I_{O L}=$ Max plus the limit value of $I_{L L}$ for the B input. This permits driving the B input while maintaining full fan-out capability. Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'90A Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$		A to $Q_{\text {A }}$	32		MHz
	Frequency	B to Q_{B}	16		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to $Q_{\text {A }}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $Q_{\text {A }}$		18	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { SET-0 } \\ & \text { Any Q } \end{aligned}$		40	ns

Recommended Operating Conditions

Symbol	Parameter		DM7493A			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.8	mA
$\mathrm{l}_{\text {OL }}$	Low Level Output Current				16	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 11)	A	0		32	MHz
		B	0		16	
t_{w}	Pulse Width (Note 11)	A	15			ns
		B	30			
		Reset	15			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 11)		25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

'93A Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Not more than one output should be shorted at a time.
Note 9: I_{CC} is measured with all outputs open, both R0 inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 10: Q_{A} outputs are tested at $I_{\mathrm{OL}}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability Note 11: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'93A Switching Characteristics

at $V_{C C}=5 V$ and $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	32		MHz
	Frequency	B to Q_{B}	16		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A} \text { to } \\ \mathrm{Q}_{\mathrm{A}} \\ \hline \end{gathered}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A} \text { to } \\ \mathrm{Q}_{\mathrm{A}} \\ \hline \end{gathered}$		18	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { A to } \\ Q_{D} \\ \hline \end{gathered}$		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A} \text { to } \\ Q_{D} \\ \hline \end{gathered}$		70	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \hline \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{B}} \end{gathered}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{B}} \end{gathered}$		21	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{C}} \\ \hline \end{gathered}$		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \text { B to } \\ Q_{C} \end{gathered}$		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ Q_{D} \\ \hline \end{gathered}$		51	ns

'93A Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline B \text { to } \\ Q_{D} \\ \hline \end{gathered}$		51	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \hline \text { SET-0 } \\ & \text { to } \\ & \text { Any Q } \end{aligned}$		40	ns

Function Tables (Note 15)

90A
BCD Count Sequence
(Note 12)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

90A
BCD Bi-Quinary (5-2)
(Note 13)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

93A
Count Sequence

Count	Outputs			
	$Q_{\text {D }}$	Q_{C}	Q_{B}	$Q_{\text {A }}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

Logic Diagrams (Continued)

\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM5490J
Package Number J14A

14-Lead Molded Dual-In-Line Package (N)
Order Number DM7490AN or DM7493AN
Package Number N14A
DM7490A, DM7493A Decade and Binary Counters
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

W14B (REV J)

14-Lead Ceramic Flat Package (W) Order Number DM5490W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

