

CMOS Counter/Dividers

High-Voltage Types (20-Volt Rating) CD4017B—Decade Counter with

10 Decoded Outputs

CD4022B-Octal Counter with

8 Decoded Outputs

■ CD4017B and CD4022B are 5stage and 4-stage Johnson counters having 10 and 8 decoded outputs, respectively. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the CLOCK input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times.

These counters are advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson counter configuration permits high-speed operation, 2-input decode-gating and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY-OUT signal completes one cycle every 10 clock input cycles in the CD4017B or every 8 clock input cycles in the CD4022B and is used to

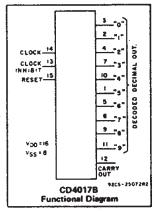
Features:

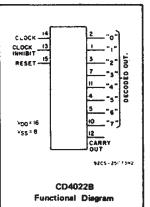
- Fully static operation
- Medium-speed operation . . .
 10 MHz (typ.) at V_{DD} = 10 V
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Decade counter/decimal decode display (CD4017B)
- Binary counter/decoder
- Frequency division
- Counter control/timers
- Divide-by-N counting
- For further application information, see ICAN-6166 "COS/MOS MSI Counter and Register Design and Applications"

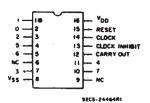
ripple-clock the succeeding device in a multidevice counting chain.


The CD4017B and CD4022B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic package (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

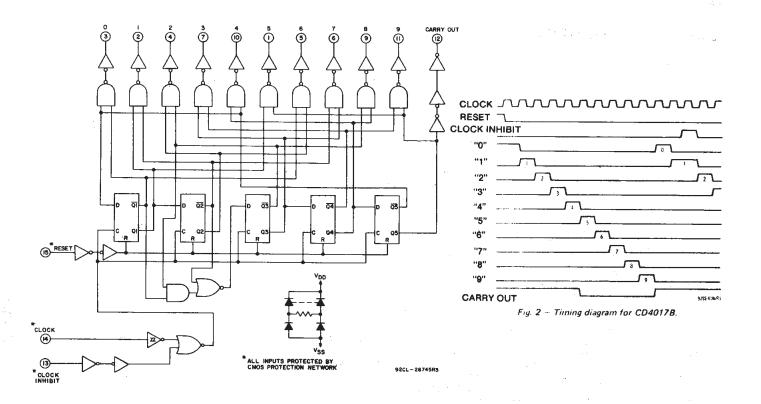

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	V _{DD}	LIN	UNITS	
	(V)	Min.	Max.	
Supply-Voltage Range (For T _A = Full Package- Temperature Range)		3	18	v
Clock Input Frequency, f _{CL}	5 10 15	- - -	2.5 5 5.5	MHz
Clock Pulse Width, t _W	5 10 15	200 90 60		. ns
Clock Rise & Fall Time, t _{rCL} , t _{fCL}	5 10 15	UNLI	2.	
Clock Inhibit Setup Time, t _s	5 10 15	230 100 70	- - -	ns
Reset Pulse Width, t _{RW}	5 10 15	260 110 60	- -	ns
Reset Removal Time, t _{rem}	5 10 15	400 280 150	- - -	ns


^{*}Only if Pin 14 is used as the clock input. If Pin 13 is used as the clock input and Pin 14 is tied high (for advancing count on negative transition of the clock), rise and fall time should be \leq 15 μ s.

TOP VIEW
CD4017B
TERMINAL DIAGRAM



TOP VIEW

NC - no connection

CD4022B

TERMINAL DIAGRAM

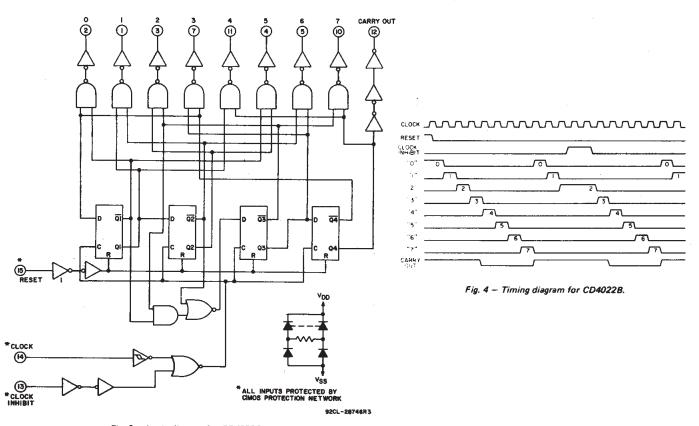


Fig. 3 - Logic diagram for CD40228.

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to VSS Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For TA = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max

AM	WIE	NT	TÉ	4PE	RA	TU	Ē	(TA)=	25	• (Ŧ	П	Ŧ	Ŧ	Н	Ŧ	Ŧ	Ħ	Ŧ	Ŧ	Ŧ	P
¥	1;1	##	;;;	11	1	##	#	1	:1	:	Ħ	##	#	H	ij	ij	I	::	H		H	H	H	1	
144	П	H	Ш	П		I		П	ij		I	I		I	Ħ	I		∷	H		H	H	H		
30	+++	+	Щ	1	Ŀ	Щ	Ŧ	Ħ	1		Ã	L	i i	1	: 1	-	1	÷	Н	Ŧ	H	Н	H	+	-
25	H	H	Н	1.0						m C	٠.	v	1	2	9 E	!	G:	5/'	113		ŧ.	ŧŧ	Ħ	7	F
25	111		ш	11.	Ш	Н		H	۲	-	1	\mathbf{H}	Ξ	Ξ	Ξ	-	1	Η	33	H	Η	Ŧ	E	Ŧ	F
- 1::	1:1		###	1::	Н	p	ĸ	П	i		1	Ŧ	::	1	::	::	1	∷	1	Ŧ	Ħ	::	E	Ξ	E
1::	:::	::	:::	11:	7		1	ŧŧ	::	:	t	11	‡1	‡	1:	::	ŧ	::	: 1	t	ŧ	::	Ħ	1	t
20	77		:::	7	Ĥ	ш	++	Ħ		=	#	Ħ	##	#	Ħ	#	#	1:	##	4	#	Ħ	Ħ	‡	Ļ
1::	₩	÷÷	ш	41	Н	1	11	4	H	*	Ħ	Ħ	Ħ	7	Ħ	##	‡	#	##	+	#	Ħ	Ħ	‡	Þ
15	Ш	Ħ	Н	ж	88	£	10	<u>v</u>	H	\pm	H	H	H	Ŧ	H	${\mathbb H}$	+	H	Н	7	H	Н	Н	Ŧ	F
	##	И	ш	#		#	#	Н	Ħ	#	I	Н	Н	Ŧ	Н	Н	Ŧ	Н	⊞	Ξ		Н	Н	Ξ	E
ю	117	×	H	##	#	##	₩	Ħ	#	#	#	Ħ	Ħ	‡	Ħ	Ħ	#	Ħ	Ħ	#	Ħ	Ħ	Ħ	‡	þ
H	W	77	H	₩	#	##	Ħ	Ŧ	Ħ	Ŧ	7	Ħ	Ħ	#	Ħ	Ħ	#	Ħ	Ħ	Ħ	#	Ħ	Ħ	#	Ė
3HZ	Ш	Н	5 4	Ш	Ξ	\blacksquare	Η	Ξ	${\mathbb H}$	Ŧ	Ξ	H	Н	Ξ	H	\overline{H}	Ξ	H	Н	\pm	Ξ	Н	Н	Ŧ	Ē
" #	ш	×	m	##	#	#	Ш		Ħ	Ш	1	Н	Н	ł	Н	Н	Ŧ	Н	Н	₽	Ξ	Н	Н	Ŧ	E
	Ш	#	Ħ	#1	#	#	Ħ	#	Ħ	Ħ	#	Ħ	Ħ	ŧ	Ħ	Ħ	ŧ	Ħ	Ħ	Ħ	#	Ħ	Ħ	ŧ	Ė
0	-		5					Ю		_	_	_	•	ıŝ	_	••	_	_	_	_	_	_	_	_	_
		O	RAI	N-1	0-	50	ŲF	ŧ¢	E	VO	L1	A	iΕ	(٧	D:	;).	-	٧			_		. 2		

Fig. 5— Typical output low (sink) current characteristics.

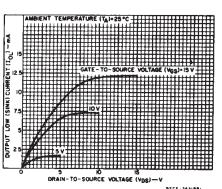


Fig. 6— Minimum output low (sink) current characteristics.

DRAIN-TO-SOURCE VOLTAGE (V_{DS})-V -15 -0 -5 0 AMBIENT TEMPERATURE (T_A)-25°C -10 V -20 2000 -10 V -20 200

Fig. 7— Typical output high (source) current characteristics.

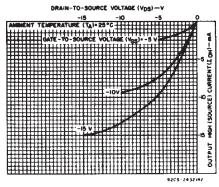


Fig. 8— Minimum output high (source) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)									
	V _O (V)	V _{IN}	V _{DD}	-55	-40	+85	+125	Min.	+25 Typ.	Max.	S		
	-	0,5	5	5	5	150	150	_	0.04	5			
Quiescent Device Current	_	0,10	10	10	10	300	300	_	0.04	10			
	_	0,15	15	20	20	600	600	_	0.04	20	μΑ		
IDD Max.	_	0,20	20	100	100	3000	3000	_	0.08	100			
	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_			
Output Low (Sink) Current	0.5	0,10	10	1.6	1.5	1,1	0.9	1.3	2.6	_			
I _{OL} Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-			
Output High (Source) Current, IOH Min.	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	m		
	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_			
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-			
Output Voltage:		0,5	5		0	.05	-	0	0.05	Г			
Low-Level,		0,10	10		0	.05	-	0	0.05				
VOL Max.	-	0,15	15		0	.05	_	0	0.05	١			
Output	-	0,5	5	4.95 4.95 5 -									
Voltage:		0,10	10		9	.95	9.95	10					
High-Level, V _{OH} Min.	_	0,15	15		14	.95	14.95	15	· –				
	0.5,4.5	_	5			1.5		-		1.5			
Input Low Voltage	1,9		10			3			_	3			
	1.5,13.5	_	15			4				4	١,		
Input High Voltage, V _{IH} Min.	0.5,4.5	_	5	3.5 3.5 -									
	1,9	-	10			7		7		_			
	1.5,13.5	_	15			11		11	_	_			
Input Current IN Max.	_	0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μ		

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}$ C, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

CHARACTERISTIC	CONDITIONS		UNITS				
•	V _{DD} (V)	Min.	Тур.	Max.	UNITS		
CLOCKED OPERATION			-				
	5	_	325	650			
Propagation Delay Time, tpHL, tpLH	10		135	270	•		
Decode Out	15	-	85	170	ns		
	5	_	300	600	1		
Carry Out	10		125	250			
	15		80	160			
Transition Time, tTHL, tTLH	5	_	100	200			
Carry Out or Decode Out Line	10	_	50	100	ns		
The state of the s	15	_	40	80	L		
	5	2.5	5	_			
Maximum Clock Input Frequency, fCL*	10	5	10	_	MHz		
	15	5.5	11	_			
	5	_	100	200			
Minimum Clock Pulse Width, tW	10	_	45	90	ns		
	15		30	60			
Clock Rise or Fall Time, t _r CL, t _f CL	5, 10, 15	UNL	UNLIMITED				
Minimum Clock Inhibit	5		115	230			
to Clock Setup Time, t _s	10	· - ·	50	100	ns		
	15	_	35	70			
Input Capacitance, CIN	Any Input	_	5	-	ρF		
RESET OPERATION							
Propagation Delay Time, tpHL, tpLH	5		265	530			
Carry Out or Decode Out Lines	10	_	115	230	ns		
	15	-	85	170			
	5	_	130	260			
Minimum Reset Pulse Width, tw	10	-	55	110	ns		
	15		30	60			
	5		200	400	,		
Minimum Reset Removal Time	10	_		280	ns		
	15	_		150			

^{*} Measured with respect to carry output line.

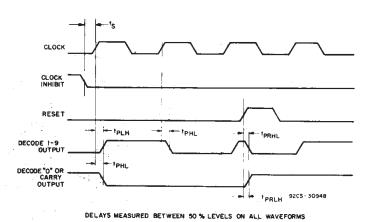


Fig. 9 - Propagation delay, setup, and reset removel time waveforms.

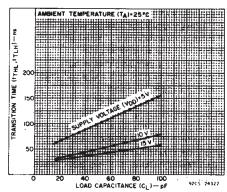


Fig. 10 - Typical transition time as a function of load capacitance.

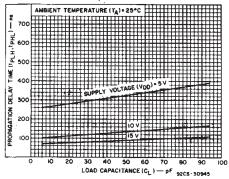


Fig. 11 — Typical propagation delay time as a function of load capacitance (clock to decode output).

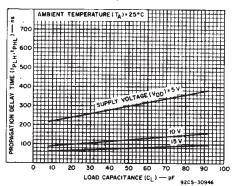


Fig. 12 — Typical propagation delay time as a function of load capacitance (clock to carry-out).

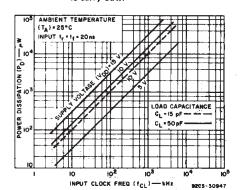


Fig. 13 – Typical dyanamic power dissipation as a function of clock input frequency.

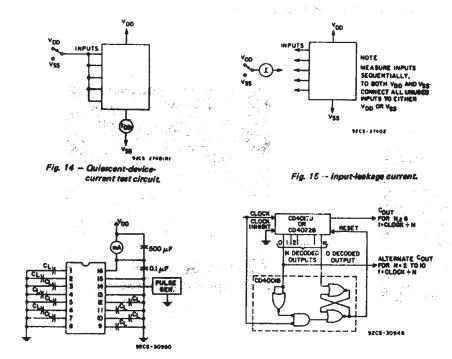


Fig. 17 - Dynamic power dissipation test circuit.

Fig. 18 – Divide by N counter (N \leq 10) with N decoded outputs.

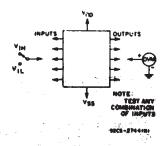


Fig. 16 - Input-voltage test circuit.

When the Nth decoded output is reached (Nth clock pulse) the S-R flip flop (constructed from two NOR gates of the CD4001B) generates a reset pulse which clears the CD4017B or CD4022B to its zero count. At this time, if the Nth decoded output is greater than or equal to 6 in the CD-4017B or 5 in the CD4022B, the COUT line goes high to clock the next CD4017B or CD-4022B counter section. The "0" decoded output also goes high at this time. Coincidence of the clock low and decoded "0" output low resets the S-R flip flop to enable the CD4017B or CD4022B. If the Nth decoded output is less than 6 (C()4(-17B) or 5 (CD4022B), the COUT line will not go high and, therefore, cannot be used, in this case "0" decoded output may be used to perform the clocking function for the next counter.

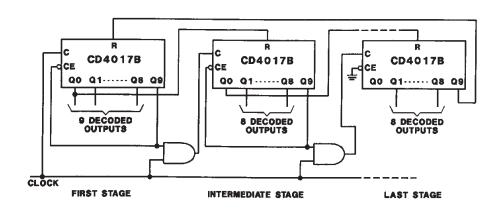
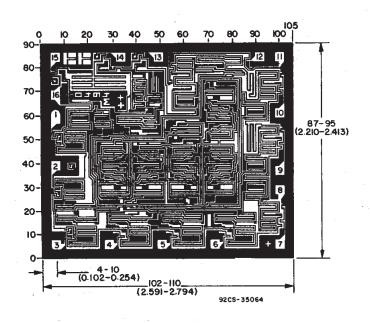
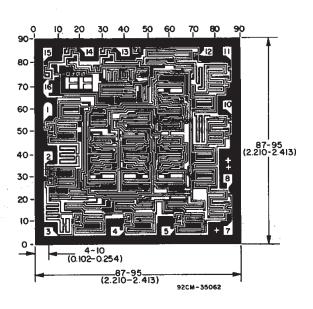




Fig. 19 - Cascading the CD4017B.

CHIP DIMENSIONS AND PAD LAYOUTS

CD4017BH

CD4022BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

Texas Instruments

http://www.ti.com

This file is the datasheet for the following electronic components:

CD4017 - http://www.ti.com/product/cd4017?HQS=TI-null-null-dscatalog-df-pf-null-wwe